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Abstract—To describe the history of moisture migration in porous media, the dependence on the relevant
material characteristics must be considered. A diffusion theory with a linear or nonlinear coefficient of
diffusivity is not adequate for the description of the behavior of mass transfer in a porous medium.
Transfers of mass of all phases and the transfer of heat must be considered simultaneously. Based upon
the principle of non-equilibrium irreversible thermodynamics, the macroscopic laws of conservation, and
the liquid—vapor equilibrium of a porous system, a set of basic equations for simultaneous mass and heat
transfer is developed. The developed theory is applied to the investigation of moisture migration in a
light-weight concrete wall subjected to a temperature gradient. The result reveals that in addition to
diffusion, both the capillary and the evaporation-condensation mechanisms, which are strongly affected

by the topology of a porous system, are important in the drying process.

NOMENCLATURE

averaged mass for mixture;

molecular weight of the ith-component
[kgmol~1];

body force acting on the ith-component
[kgms~2-mol™'];

molar volume of the mixture [m®mol~!];
total macroscopic pressure (kgm~'s~?];
phenomenological coefficients;

thermal conductivity of the ith-component
[kgms *K™'];

effective thermal conductivity tensor
[kgms *K™'];

unit normal vector perpendicular to the
earth surface;

diffusivity of gas [m?s~1];

thermal diffusivity [kgm~'s~1];
microscopic local velocity of gas [ms™!];
microscopic local pressure of the ith-
component [kgm™'s™?];

equilibrium vapor pressure of bulk water
[kgm™'s™?];

specific enthalpy of the ith-component
[m?s~2];

mass average velocity [ms™!];

empirical parameter;

hydraulic porous radius or characteristic
length of a porous medium [m];
volumetric moisture content per unit
volume of the porous body [m*m™3];
the vector of absolute mass flux for the ith-
component [kgm~?s™'];

topological parameter of the porous
medium [dimensionless];

the bulk velocity vector [ms™'];
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the absolute velocity vector of the ith-
component [kgm~?s71];

expression in coefficients [dimensionless];
expression in coefficients [ms?kg™']:
expression in coefficients [K™'];

heat flux of the ith-component [kgs™*]:
absolute temperature [K];

mass flux of the ith-component relative to
the mixture average velocity [kem~2s7'];
gas constant [ms?kg™'];

expression in coefficients [ms?kg™'];
expression in coefficients [K ~'];
expression in coefficients [dimensionless].

Greek symbols

&(t),
¢’

His
y?
nt,

KK,
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porosity of the porous system [m*m™*];
volume fraction of the ith-component
(m’m~°T;

mole fraction of water vapor of the gaseous
component {mol/mol];

mass concentration per unit volume of the
porous system [kgm™?];

mass concentration of the ith-component
per unit volume of the porous system
[kgm™°];

density of the ith-component [kgm ~*7];
the mass rate of source of ith-component ;
the mass rate of evaporation per unit
volume of the porous system [kgm ~*s ']
(without subscript);

chemical potential for the ith-component
[kgm?s~?mol~'];

dimensionless parameter defined in
equation (2.2.14);

bulk viscosity of the ith-component
[kgm™'s™'];

permeability of the ith-component and
mixture through the porous system,
respectively [m?];
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s shear viscosity of the ith-component
[kgm='s~'];

W,  rate of heat generation [kgm ~'s™*]:

®, gravitational potential ;

i, viscous stress tensor [kgs " ?m™'];

Ay latent heat of vaporization from the bulk
liquid [m?s™'];

&, stress tensor [kgm ™~ !s™2];

a, surface tension of gas-liquid interface
[kgs™ 2]

To» surface tension at the reference temperature
[kgs™?];

a, Stefan—Boltzman constant [kgs™* K ~*];
B. empirical constant [kgs 2K '];
(7]

R moisture content ;

& relative permeability = x,/k ;

a, mass transfer coefficient [molm~2s™'].
Subscripts

i, ith-component of the mixture;

s, of solid ;

L, of liquid;

g of gaseous mixture;

g, of vapor in a gaseous mixture ;

ga, of air in a gaseous mixture ;

w, of water.

1. INTRODUCTION

To DESCRIBE the history of moisture migration in
porous media, the dependence on the relevant
material characteristics (the topology of the solid
matrix, interface phenomena among solid, liquid,
gaseous vapor and air, and liquid—vapor equilibria)
must be considered. The phenomena relevant for
moisture, pressure, and temperature distribution are
coupled. A diffusion theory with a linear or a
nonlinear coefficient of diffusivity is not adequate for
the description of the behavior of mass transfer in a
porous medium. Transfers of mass of all phases and
the transfer of heat must be considered simul-
taneously. During the funicular stage (liquid satu-
rated stage), diffusion seems to be the mechanism
of moisture transport. However, in the pendular
stage (unsaturated liquid flow stage), experience
shows that diffusion, capillary and evaporation-
condensation are the governing mechanisms in
the mass transfer process. Experimental evidences
prove that the pore size distribution of a porous
medium is the important parameter affecting
moisture transfer in the porous system in such a
state. Theoretical analysis also confirms such a result
[1]. Therefore, a general mathematical model for
multi-phase moisture transfer in porous media must
be constructed by using the principle of non-
equilibrium irreversible flows of heat and mass. With
the linear phenomenological equations and the laws
of conservation in macroscopic sense [2], a set of
differential equations for simultaneous heat and
moisture transfer in porous media is developed. The
set of differential equations is well-posed. With the
given boundary and initial conditions, the differential
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equations can be solved readily by a digital
computer. In this paper, the developed theory is
applied to the investigation of moisture migration in
a light-weight concrete wall of 0.1m thickness,
subjected to a temperature gradient. The result
reveals the distinction of different stages. constant
rate, funicular state and pendular state. [t shows that
temperature gradient plays an important role in a
drying process. This fact finds a significant appli-
cation in engineering.

2. ANALYSIS OF MASS AND ENERGY
TRANSFER IN POROUS MEDIA

During drying of a saturated porous system, a
large amount of moisture evaporates from the
boundary surface of the porous system to the
environment at a rate which is equal to, or slightly
lower than, the rate of evaporation from a bulk flat
water surface under identical environmental con-
ditions. The rate of evaporation is almost constant. If
the latent heat of vaporization is supplied solely by
molecular transport, the surface temperature of the
porous medium is near the wet-bulb temperature of
the ambient atmosphere. This period of drying is
called “constant rate period”.

When the moisture content continuously drops,
the mechanism of the removal of vapor from the
boundary surface is still predominant. The drying
rate gradually decreases, because the fraction of the
surface which is saturated becomes smaller, as dry
spots slowly appear and grow in the boundary
surface. Inside the porous medium, the liquid phase
of moisture filling the pore space remains con-
tinuous. This stage of drying is termed “funicular
saturation stage”. As the drying continues, the drying
rate is controlled by internal moisture diffusion,
capillary action, and evaporation—condensation
mechanisms [3]. The drying rate becomes relatively
insensitive to the velocity and relative humidity of
ambient air and decreases significantly. The surface
of the drying front, from which the evaporation
occurs, may retreat [rom the boundary surface
inward to the inside of the porous system. The
drying period is termed “pendular saturation stage”.
The duration of this stage depends strongly on the
topology of the porous system.

In this analysis, transports of a liquid and its
vapor, mixing with chemically inert air, in a rigid
porous system are considered. The moisture content,
temperature, and pressure distribution in the porous
medium are of interest. These functions can be
determined by the application of the principle of
nonequilibrium thermodynamics and of the macro-
scopic conservation laws of mass, momentum, and
energy. The macroscopic continuum approach is
adopted in this analysis : the actual multi-phase porous
medium is replaced by an ideal continuum which is a
structureless substance. To any point of which we can
assign kinematic and dynamic variables and the state
parameters that are continuous functions of the spatial
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F1G. 1. A volumetric element of porous media.

Table 1. Constituents of the porous system

Components Volume fraction Mass concentration
cm®em™? gem ™3
Solid g =1-¢ 8, = psgs = py(l—¢)
Liquid (water) & =e—¢, 3, = pyey = pyle—e,)
(vapor) oe,
gas g, 8, = Pyt = (e, +pu(1 — D),
(air) (1- ),
Total gtete, =1 O+ 0+ 05+0, =8

coordinates and time. Thus, the following assumptions
are made:

1. The multi-phase porous system is in thermo-
dynamic equilibrium locally;

2. The solid matrix is rigid, and is fixed in an
inertial frame;

3. The liquid component is incompressible ;

4. The vapor, air, and their mixture are ideal
gases; and

5. The moisture content “in the vapor phase is
negligible in comparison with the moisture content
in the liquid phase.

A logical consequence of the first assumption is
that the local variables such as mass concentrations,
temperature, pressure, enthalpy, and others can be
specified at any point in the porous medium. For
convenience, the volume fraction and the mass
concentration for various components are sum-
marized in Table 1. Also the relations of volume
fractions of a unit volumetric element of porous
media are shown in Fig. 1.

A. Macroscopic laws of conservation
(a) The macroscopic conservation law of mass for
each component.

d, = constant, 2.1)

06
a‘t'+v ‘=T, (2.2)

g0
3 +V~ngL =T, 2.3)

0
ﬂ"’“ +V- o = 0, (2.4)

ot

and

r+T,, =0, (2.5)

where 8; denotes the mass concentration for the ith-
component, n; the absolute mass flux of ith-
component, ¢ is time parameter, and I'; is the source
for ith-component.

In equation (2.1) we have assumed that the mass
concentration of a solid is constant. This assumption
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is not true when the chemical reactions and the
mechanical swellings of solids are included.

(b) The conservation of linear momentum. In a
conventional drying process, the characteristic time
for drying is generally large and is of the order of
days and months, and the transfers of heat and mass
are rather slow. Thus, it is reasonable to treat the
process of flows as quasi-steady. In such cases, the
conservation of linear momentum equation can be
replaced by the Darcy equation [4]:

V- (P+®), (2.6)

where £ denotes the permeability tensor. For an
isotropic porous system, & = kd,;; # is the viscosity
of the fluid, ¢ the porosity of the solid matrix, P the
total pressure, and @ denotes the gravitational
potential.

Darcy’s equation was originally considered to be
the equation of motion for a fluid moving through
an isotropic and homogeneous porous medium. It has
been extended and applied to gaseous flows in a
porous media [4, 5] for cases where the inertia term
in the equation of motion is negligible.

The convective velocity of a fluid flow is defined as
the mass average velocity as follows:

N N F N N
V= (z XAILE (z n,),/(s,

= - =1

27

where the mass average velocity v is called bary-
centric velocity of the mixture, and J the density of
the mixture, defined as

N
= Z 0
i=1

Microscopically, there exists in each open system a
collection of N different components of molecules.
The molecules of the ith-component participating in
a gross motion move with an absolute velocity v,. A
relative mass flux for ith-component, J, is thus
defined as [6]:

J,=3v,—v) =n,— v, (2.8)
where the barycentric velocity v is a measure of the
absolute macroscopic velocity of the mixture, and
(v;—v) is a means of the diffusion velocity for the ith-
component with respect to the barycentric velocity v.

(c) The macroscopic  conservation of = energy
equation.
Dh DpP
o= =V g+ ——VviT+y, 29
‘Dt LY v (29)

where h is the macroscopic enthalpy per unit mass, q
is the apparent heat flux, 7 is the viscous stress
tensor, and y represents the source of heat rate.
Equations (2.1)- (2.6) and (2.9) constitute the trans-
port equations of moisture transfer in a porous
medium under the aforementioned restrictions.
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B. Two modes of mass and heat transfer

(a) Molecular diffusion in guaseous phase. In the
gaseous phase, molecular mass and heat transfer
occur simultancously. For a binary system (vapor
and air), the following conjugated fluxes and forces
are considered, [2.6,7]:

Flux Forces

1
q, 3 (VT)

1
J. M (Ve —X)

!

1 ,

Ju - M’ (V'l':ua - Xa)"

where q, denotes the gaseous heat flux, T is the
absolute temperature, J, u; and M, are the relative
mass flux, the chemical potential, and the molecular
mass of ith-component, respectively; V, is the nabla
operator with the constant temperature; and X; the
body force of ith-component. By the definition (2.8),
the relative mass fluxes for vapor and air are:

Jo=3,.(v, —v,) (2.10)
and

3y = 3yalVya=¥,). 2.11)

respectively, where the mass average velocity of the
gas mixture is defined by:

Vo = [0 40,4000 )/ (B + 8,4 (2.12)
Summation of equations (2.10) and (2.11) yields
J.+J, =0 (2.13)

Using the linear law of irreversible thermo-
dynamics and the Onsager reciprocal relations [2],
we obtain the phenomenological equations:

—q, = {ill VT+alqA} (2.14)
and
—d=d, = %‘%ﬂ VT+a,,. } (2.15)
where
A= ! v X 1 (v X |
- M, TH: v Ma THa—
and a;(ij=12) are the phenomenological

coefficients.
At a constant temperature,
Margules equation gives

OVp,+(1—)Vyop,—VVP = 0.

the Gibbs-Duhem-

The expression 4 can be re-written as:

M (2% X, )—-VrvP+X
M] THe 3 .

(2.16)
where
M= Mp+M,(l—-¢),
X = X, +X,(1—¢),
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and where V is the molar volume of the mixture.
With assumption (4), the chemical potential for
vapor can be expressed as

(¢, T, P) = const + RTIn(¢pP),  (2.17)

and, with the densities of the gas components given
by
M,P

M, P
Pr = RT s Pa

RT

and

P
pg = E:I: [Ml¢+1wa(1 _@)}

In turn, equation (2.16) can be rewritten as:

RT v, v
M { Vo + |-~ |vp
M, M

X, X
(-2 ew

It can be shown from the kinetic theory of dilute
gases [8] that the phenomenological coefficients may
be expressed as

ay, = Tk,
MNY M\ M
= 1—)Dl—J{—= | ——,
azz = p,¢(1 ~¢) (M) (M) RT
and
all == DT" (2.19)

where k, is the thermal conductivity, D the diffu-
sivity, and D; thermal diffusivity of the gaseous
mixture,

Substitution of equations (2.19) and (2.18) into
equations (2.14) and (2.15) yields:

b
0,87 RT V. V¥
9 = Fot +M(l—q&){(,b ¢+(M, M)

X, X
x M,VP— M,(ﬁ - X)f)} (2.20)

!

and
MM, MM,
~J, =, = pe,D wE Vo +p,e,D T
or M (Vo Voo M (X, X
X{’VT R (M, M)VP R \M, M)’
2.21)

where 7 is a nondimensional parameter defined as:

. (MN/M\ Dy
a M, J\M, pgD'

If gravitation is the only body force acting on the
gaseous subsystem, X,/M,=X/M = —gk. In fact,
the term inside the braces of equation {2.20)
represents the Dufour effect, and the term in
equation (2.21) is the Soret effect. In natural drying
processes, both the Defour and Soret effects may be
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neglected [6]. Thus, the molecular fluxes in the
gaseous phase may be simplified to:

a4, = —ek,VT. (2.22)

and
MM
Jo= —J,= —p,e,D 7:;; Vo (223)

(b} Convective mass transfer. To determine the
liquid and gas barycentric velocities, the macroscopic
conservation law of linear momentum for the liquid
and gaseous phase should be used. In a drying
process, the process of flow is reasonable to be
treated as quasi-steady, and the linear momentum
equations for liquid and for gaseous mixture thus
yield [4]:

V= — L V(P4+0), (2.24)
wi
and
v, = — L VP, (2.25)
?/’HSE

In gaseous convective flow, the influence of the
gravitational force is negligible in comparison with
that of the pressure gradient.

It is well-known that the permeability of porous
media depends strongly on the moisture content of
the porous system. When a simuitaneous flow of two
or more immiscible fluids in a porous medium is
considered, the flow rate of one of the fluids at a
point of the porous system is reduced, since part of
the pore space in the vicinity of that point is
occupied by another fluid. Thus, the concept of
relative permeability should be employed [4]. Per-
meabilities x; and , for the liquid and gaseous flows
in an isotropic porous medium are generally ex-
pressed as fractions of the single-phase permeabil-
ities, x{ and «_ respectively. The ratios x,/x{ and
Kk /iy are defined as relative permeabilities, and
denoted by {, and {,, respectively. For a particular
porous system, {; and {, are obtained directly from
experiments. Thus, the equations of motion for the
liquid and gaseous phases are:

¢ .0
v= - Lyp i, (2.26)
Mgy
and
.
v, = — 2L Vp. (2.27)
N4y

At the transition from the funicular to the
pendular saturation stages, an unsaturated flow
begins in the porous medium. The liquid phase in the
medium is in general discontinuous. Determination
of a local value of total pressure P becomes
complicated because of the presence of the capillary
and adsorption forces.

In pendular saturation stage, there exist a great
number of isolated liquid islands in the porous
system. The liquid film transfer on the surface of
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pores is hindered by the adsorptive force field of
solid matrices. The vapor movement is thus the
major mechanism of mass and energy transfer for
this stage [9].

3. DIFFERENTIAL EQUATIONS FOR
DRYING PROCESSES

There exists a general agreement that the dura-
tions of constant-rate and funicular saturation
stages are very often only a small fraction of the total
drying time. The moisture migration in coarse
granular solids is the only exceptional case. Never-
theless, in the following, the basic differential
equations for the funicular and pendular saturation
stages will be discussed separately.

A. Differential equations for mass transfer in funicular
stage

At the beginning of a drying process, the pore
spaces in the porous medium are saturated with
liquid which forms a continuous fluid phase within
the matrix. Even if the pore space initially is
saturated with liquid. a finite value of the capillary
pressure must exist and must exceed a critical value
before air can intrude into the element of the pore
space [ 10]. As the drying proceeds, a certain pressure
must be built up to displace the liquid fluid. Such a
pressure may be expressed as a function of hy-
drostatic and capillary pressures. In the funicular
saturation state, we can assume that the gaseous and
solid phases are stationary, i.e..

v, =v, =0, (3.1)

and thus, the equations of continuity (2.2)-(2.4) yield

;[ (e)+V-(ev) = —([uip) (3.2)

and

N

(g =T (3.3)

G

The pressure P exerted on the liquid phase is a
function of the liquid volume fraction ¢, and
temperature 7 [11,12]. Thus, the gradient of P is
expressible as:

VP = D,Ve,+ D, VT. (3.4)

where D, and D, are the coefficients of diffusivity
which represent the partial differentials (¢P/0s,), and
(CP/ET),. Tespectively.
Substitution of equation (3.4) into equation (2.24)
yields:
N .
vy=— == [DVg+D VT—pik].
e

(3.5)

We substitute this result into equation (3.2) to
obtain

Py v 0
G -{?’."l (D,,Vz;, + D,,VT)}
ot M .

.0
K - r

+V- gii p,k} +-4 =0,
’Iz £i

(3.6)
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Combination of equations (3.3) and (3.6) yields:
4 O
sy

I )
(et pe)+ Ve J/ !
ot o | iy

(1),,Vé:,+D7-VT)}

2
+v-%"’5’"’ /(-}:o. (3.7)
i

Many investigators [13.14] have shown that
moisture transfer under temperature gradients is
negligibly small both in very wet and very dry
porous media. Thus the term associated with the
temperature gradient can be dropped for pye, < pe,.
and equation (3.7) then becomes

(e BTN
,,,,!+V.§i'

<
My

0
{

- (D,V;;,er,ﬁ)} = 0. (3.8)

ct

This equation governs the mass transfer in the
funicular saturation stage, and is analogous to the
transport equation called “Darcy’s equation for
unsaturated flow” in the soil science proposed by
Buckingham [15].

B. Equations for mass and heat transfer in the
pendular stage

The mechanisms of moisture transfer in the
transient period (from the funicular to the pendular
saturation stage) are much more complex than that
for the cases with liquid or gaseous continuity.
Fortunately, the transient period occurs during only
a small fraction of the total drying time. Therefore,
we may assume that once the continuity of the liquid
phase in a porous system breaks down. the bulk
vapor transfer takes place immediately.

As the liquid phase is discontinuous. several
mechanisms for moisture transfer (such as capillarity,
evaporation -condensation) are involved in the pen-
dular stage of drying. The transport equations
derived in the preceding section arc no longer
applicable; their solutions could not fit the experi-
mental data [16]. To explain this discrepancy,
many investigators have proposed an evaporation-
condensation theory which includes the effects of
temperature gradient on the movement of moisture
in porous systems [11,12]. Based on the principles
of continuum mechanics and thermodynamics,
Luikov [17] derived a set of linear mass and heat
transport equations. Closed form solutions were
obtained for several simple drying cases. Unfor-
tunately, the effect of phase change ts not considered,
and the dependence of the transfer coefficients
(constant coefficients) on the temperature, con-
centration. and pressure gradients is neglected.
Assuming that all moisture transfer took place in the
gaseous phase only, Harmathy [I18] investigated
moisture and heat transfer in porous media.

In this section. Harmathy’s model [18] is em-
ployed and extended. Since the capillary and the
evaporation—condensation mechanism play a pri-
mary role in the transport equations for the pendular
stage, the major driving forces in the porous system
are the gradients of mass concentration. temperature.
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and pressure [17]. Inside the porous system, there
exist liquid islands through which the vapor flux is
transported by the vapor-pressure gradient across
the air-filled pores. The flux through the liquid
islands adjusts itself to carry on the vapor moisture
flow. Moleculars of condensed liquid are adsorbed
by the interior surface of solid matrix, to form the
thin films covering the surface. Both liquid islands
and films possess rather small mobility in com-
parison with the vapor fluxes. Therefore, both the
solid matrix and particles of liquid film are assumed

stationary in this stage, i.e.,
v, =v,=0. (3.9)

Consequently, the equations of continuity for mass
(2.2) through (2.5), become

04,
— = T, 3.10
% (3.10)
04,
- +V~[Jg,,+5gl,vg] =T, (3.11)
ct
65
LT v [J +6gavg] a, (3.12)
and
lo=-I'=T (3.13)

Since natural drying is a slow process which takes
place at atmospheric pressure, the liquid phase of
moisture is considered to be incompressible, and the
gaseous phase is taken to be ideal. Thus,

M, P M,P
P =P P = RT 3 RT’
and the density for the gaseous mixture is

PM P
RT RT

Pa=

Pg= —[M, 0+M,(1-¢)]. (3.14)

Equation (3.10) shows that the only local rate of
change of liquid is caused by the phase change of
liquid to vapor. With the aid of Table 1, equations
(2.22), (2.23) and (2.25), the equations of continuity
for vapor and air (3.11 and 3.12) yield the two
second-order nonlinear partial differential equations:
A $+BP+C, T

=D,V +E, VP +G,(V§)?

+H (VP +J,(V¢-VPY)+ K, (Vo VT)
+L,(VP-VT) (3.15)
and
A, +B,P+C, T
=D,V +E,V?P+G,(Vo)?
+H,(VP)> +J,(Vp-VPY+K,(V¢-VT)
+L,(VP-VT), (3.16)
respectively, where ¢ denotes the partial derivatives
of ¢ with respect to time, and where the coefficients
A,,..,L; are functions of dependent variables ¢, P, T

and the volume fraction ¢, They are defined as
follows:
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A = Y(asg/6¢)+sg, Ay = (1—¢)(Ce,/0d)—¢,,
B, = Y(3¢,/0P)+¢,(¢/P), B,={(1—-¢)0,,
Cy = Y(0e,/0T)~e,(d/T), C,=—(1—¢)0q,
D, = De,(M /M), D, = —Dey(M, /M),
E, = {o(kd/n,), E, = (1 =) (kI/n,),
F, =0, F,= 0,
G, = —DO(ﬁ(Ma/M), G2 = DO 0,(M /M),
Hy = ¢W,(xi/n,), H, = (1 —$YW, (k) /n,),
I, =0, I, =0,
J, = DO (M /M) Jy=—DO0,(M,/M)
+(kg/mg) P8¢/, + (kg1 —¢)
- (Be,/0d) + (], (Ge,/ed)— (],

K, = —DO:(M,/M), K, = DO(M /M),
Ly = —¢welig/n,), Ly = —(1=¢)Wrlrg/n,),
in which

0, = g,[ (M, — M)/ M]—(3e,/0¢),

O (e4/P)+(0¢,/OP),

_r = (g,/T)—(0e,/3T),

Y=¢~-(p,RT/M,P),

W, = ({/P)+(0/0¢,)(0e,/OP)
and

Wy = ({/T)—(8/8¢,)(0e,/8T).

A general form of the law of conservation of
energy is given in equation (2.9). Nevertheless, a
rather explicit form of the energy equation for a
porous system which consists of solid, liquid, vapor
and air, can be written as follows [6]:

%
L By 8 yahy + 8+ 3B )V (g b, +1gh,)
ct

'ga’'ta

DP
= -V q+——-Vv:i+¥, (317
1+, \ (3.17)

where the mass average velocity v is defined by
v={(5," (3.18)

With the aid of equation (3.9) we can show that the
mass average velocity of the porous system v is a
negligible fraction of the mass average velocity of
gaseous mixture, v,. Thus the term (v-VP) may be
omitted. The viscous dissipation, (Vv:7), is positive
(from the second law of thermodynamics) and
represents an irreversible degradation of mechanical
to thermal energy. In general, it is negligible in
considering the drying processes. Furthermore, the
heat source term, ¥, including effects of emission and
absorption of radiant energy, may also be neglected.
Thus, the energy equation (3.17) becomes:

oh,  oh, _oh _ h,
(5 TN S i U )

+4,,v

ga " ga

+ oW+,

gv Gb

IR 7: 4 ot
+(ng,*Vh,+n,,-Vh)
00, P
— V.q———=0, (3.19
* ot Q+V-q ot ( )
where
Q=h—h, (3.20)

(02,
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Several thermodynamic relations are needed to
relate the total thermal energy to the dependent
variables ¢b. P, and T. First, with the vapor behaving
as an ideal gas, the Clausius-Clapeyron equation
gives the equilibrium vapor pressure PY in terms of
the latent heat 4 of free bulk water surface as

g

i
PO =~ exp[ — MM /RT)]. (3.21)
;

where ¢ denotes a constant of integration. Using
Kelvin’s equation, the vapor pressure P, in a
capillary porous system with the hydraulic radius r
can be expressed as

In(P,/P%) = — (20/p,r)- (M JRT).  (322)

where o denotes the surface tension in the gas-liquid
interface. The surface tension is a function of
temperature. For a small variation of temperature,
the surface tension may be expressed as a linear
function of absolute temperature as

6 = go— BT,

where o, and f§ are empirical constants. Substitution
of equation (3.21) into equation (3.22) yields the
expression for the vapor pressure in the porous

system:
p 1 M, ( N 20 )
= ex e /\. B .
Toe P RT \ Pl

Note that the vapor pressure in the pores is made
up of two parts: {1} the first part is the pressure that
exists when the gas-liquid interface is flat, and {2)
the second is the pressure caused by the effect of
curvature of the menisci. Thus. the total latent heat
of evaporation in a porous system is:

{3.24)

g
Q=4+ -
al

(3.25}

In general, Q is a weak function of the gaseous
volume fraction ¢, For simplicity, we will assume
that the Q is independent of ¢,.

With the definition P, = P¢, solving equations
{3.21yand (3.22) for r vields:

r= —20M, ) p R[TinladpP)+ 1AM }R];}.

fk
[

(3.26)

Substitution of equation (3.26) into equation (3.25)
gives the useful expression:

0= }:i [Tln(ad)P} +“Ij] (3.27)

Next, we should consider the enthalpy of multi-
component mixtures in terms of dependent variables
¢, P and T, hence,
ch ch

—dP+ - dT. (3.28)
. B

dh="ap
T ap T

Using Maxwell’s reciprocity relations, equation
{3.28) can be rewritten as:

C. L. D Huaxna

¢h 1 Iy,
= Nag| -1~ )
dh= G ¢+[V 7%(‘/)),

g

FTH dP+C,dT.
o
(3.29)
The (ch/é¢) term is generally negligible in com-
parison with (C,dT) in drying processes. Under the

assumptions {3) and (4), the change of enthalpy for
each constituent in the porous sysiem is

|
{1) Solid dh, = - dP+(C,),dT.
Py

|
dP+{C,),.dT.
I

(3) Gaseous vapor dh, = (C,),dT,

{2) Liquid dh, =

and

@) air dh, = (C,),dT. (3.30)

The multicomponent energy flux q is a macro-
scopic average of conductive energy fluxes for gaseous
mixture. solids and liquids. Since the mass average
velocity v for the porous system is relatively small,
the multicomponent energy flux and force follow
Fourier's law

4= —kVT. (3.31)

where k is the locally averaged thermal conductivity
of the porous system and is a function of the
moisture content, topology of pores, and the thermal
conductivities of the solid, liquid and gaseous
components. Although a considerable effort was
devoted to find explicit functions for k, unfor-
tunately, no analytical expression for a multicom-
ponent real porous system was found [19]. A useful
empirical formula for an isotropic and homogeneous
porous medium, proposed by Kingery [20],

k= [(kg)"ﬁy‘f-(,kl)"((l'“élg)%-(kx)"“ —e)]”", (3.32)

will be used. where &, is the thermal conductivity of
the ith-component; n is the topological parameter of
the porous system (which should be determined
experimentally).

After some algebraic manipulation, the total

energy equation (3.19) can be expressed as
Ay +B, P+ T = F VAT
F VTP + KV VT+L,VP-VT. (333)

where the coefficients A4;..... Ly are functions of ¢, P,
T and ¢,. They are:

Ay = p L0,/ CP).
Cy = p,Q(ie,/CT)
+[(f:~1:g)pW(Cp)w+ps(1 —8)((“,,)5]

+6,PLOM (C ), +(1~¢)M,(C,),J/RT,
D;y=0. E;3=0, G3=0, Hy=0,
Fy=k, Iy =(ckjce,(Ce,/eT), J3 =0,
K3 = {Ck/Ce Nl )/ igp)

—DM M 6, P[(C,),—(C,).}/RTM,

By = p,0Qlce,/OP)—s,.

and
Ly = (8k{Te )06, /AP
+ (;\'Q’ZP)[MW(C[,),([) + M (C ) (1 —@VY/RT.
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As we examine these coefficients of equations
(3.15, 3.16, and 3.33) closely, we realize that the
coefficients are functions of four independent vari-
ables (¢, P, T, and ¢;), while only three basic
equations are derived. A fourth equation, which
describes the relation between the four variables, is
needed.

The existence of local equilibrium at any point of
the porous system is assumed. The partial vapor
pressure at any point of the system can be
determined from a sorption relation,

m=m(P,T),

which characterizes the porous system (pore size
distribution) and must be determined experimentally.
The equilibrium vapor pressure can be approximated
by Kelvin’s equation, provided that the “¥” in
Kelvin’s equation is interpreted as a characteristic

length of pores.
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Nerpin [21] and Vol'fkovich [22] proposed that a
liquid—vapor equilibrium in a porous system can be
expressed as a functional relation between the
moisture content and the hydraulic radius of the
porous system, as

m = m(r),

where m is the volumetric moisture content per unit
volume of the porous body. Such an extension is
purely empirical, and the validity of the extension
should be verified by experiment [22].

With the definition of r from Kelvin's equation
(3.22), equation (3.33) gives the dependence of m
upon the variables T and P,:

m=m(ry=m(P,T)=m(p, P, T), (3.34)
and provides the required equation.

Various experimental techniques. such as the

Table 2. Values of the constants used in the equations (light weight concrete)

Type of
const. Symbol Value Unit
Physic. R 83149 x 10714 kgm?s 2K~ 'mol™'
const. oy 5670 x 1078 kgsPK ¢
(Cpa 1.0063 x 103 m 2s 2K™?
(Cp)s 0.879 x 10* m2s 2K 2
C,), 1.8646 x 103 m 2s 2K "2
(C) 4.1793 x 10° m?s 2K "2
D 0.256 x 107* m?s!
[4 0.8
Physical k, 0.02613 kgms™3-K~!
properties k, 1.4422 kgms *K™!
k, 0.616 kgms *K™!
M, 28.952x 1073 kgmol !
M, 18.016 x 10~ kgmol ™!
£ 0.3 m®m~?
1, 183 %1073 kgm™'s™!
K? 2.50 x 1014 m?
A 2.4418 x 10° m?s~?
04 2.6x 103 kgm™3
. 0.99707 x 10° kgm™?
Geom. L 0.10 m
const. B 2.00 m
Empirical a 1.209658 x 1011 ms’kg!
const. b 5080 K
n 0.25
B 0.167 x 103 kgs *K™!
v 1.0
oo 121.2x 1073 kgs™?
Initial Pym 1.01325 x 10% kgm ls™?
conditions Mg 0.096 m*m~3
T, 294.8 K
Boundary o0 = 0.013400 mol/mol
conditions o o1 = 0.003548 mol/mol
T Too = 302.99 K
0i Ty, = 294.0 K
- T,y = 304.0 K
e T,, = 2930 K
ap 0.0 molm~2s"1!
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Fii. 2. Liquid vapor equilibrium curve for a light-weight concrete,

mercury-injection method, are commercially avail-
able for determining such a relationship (3.34).
From Fig. | we also note that

m =&, +A{ps,),

where A denotes a very small positive value. Except
for the bone-dry case, the following inequality
usually holds (assumption No. 5):

;o A ((/)1:” ).

Consequently, the volumetric fraction of gas phase
&, can be approximated by writing

t,=c~mlgp, P. T), (3.35)

which provides the relationship between g, and ¢.

Thus equations (3.15), (3.16), (3.33) and (3.35)
form a complete workable set of nonlinear differen-
tial equations for unsaturated flow in porous media.
The equations are similar to the equations derived
by Harmathy [ 18].

4. APPLICATION OF THE
TRANSPORT EQUATIONS
The solution of moisture migration in a thin
concrete slab under natural drying conditions has
been obtained by Huang et al. [1,23]. In this paper,
the moisture migration in an extended lightweight
concrete wall of 0.1m thickness subjected to a
temperature gradient is studied.
For one-dimensional mass and heat transfer in a
slab of thickness L, the equations (3.15), (3.16), (3.33)
and (3.35) are given in the following form:

T
4, f‘b + 8 + -
(f
n%p Mp T (:4) 2
SR S N
P ox? * fox? trias ! ﬂ\')
P\ (0T (0 0P
o) +1(t _#) <_4
+ '(_(’.\') ’(("x ) Ox (‘\)
2h T oP T
+K(<i; '(T' )‘FL;(:""(:—}
ox ox ox  fx
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FIG. 3. Distribution of moisture (a), temperature (b) and pressure (c) in 10cm light-weight concrete slab.

and

gy = {1 =0[r(¢, P, T)]}, (4.2)

where the function, 8 = m/e, denotes the moisture
content. For future reference, equation (3.32) will be
used to calculate the effective thermal conductivity of
the porous walls.

The boundary conditions on the surfaces of- the

wallare (i=0forx=0;i=1forx=L)

0p . (RT\

@ _ (_m(ﬁ)((ﬁ do. (43)
ar _ (- 1)ik (T-T,) (withT=T), (44)
Ox k

and
P=P,. (4.5)

where a denotes the mass transfer coefficient, D the
diffusion coefficient, # the heat transfer coefficient,
and k thermal conductivity. ¢q;, Ty, and Py,
respectively are the mole fraction of water vapor,
temperature, and pressure of the surroundings of the
porous wall. For a wall surrounded by air at normal
conditions (the air pressure is at atmospheric

pressure and the temperature is between 0 and
80°C), the transfer coefficients may be expressed as

[24]:
a=op+1.63x 107°[(T,,— T)/B]*™*
h=275x10%+a.e(T3—THUT, - T),

(4.6)
4.7

where a, denotes the mass transfer coefficient due to
forced convection. B is a characteristic length of the
wall  measured from the edge, o4, the
Stefan—Boltzman constant. T,; the temperature of the
enclosure of the system.

The initial conditions for the present study are
given as follows:

O(x,0)=¢,,;, P(x.0)=P,,,.. T(x.0)=T,.. (4.8)

atme

Therefore, equations (4.1-4.5 and 4.8) form a
nonlinear boundary value problem for the simul-
taneous mass and heat transfer in a light-weight
concrete wall.

5. NUMERICAL ANALYSIS
AND CALCULATION
Obtaining an analytical solution for the nonlinear

partial differential equations governing flows
through porous media would not be possible. In this
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paper, an implicit finite difference scheme is em-
ployed for obtaining numerical results. The first step
is to replace the differential equations by a set of
algebraic finite backward-in-time equations, which
give the relationships among the dependent variables
¢, P, and T at neighboring points in an (x,t) space.
The numerical solution of the simultaneous algebraic
equations thus obtained yields the values of the
dependent variables at the pre-assigned grid points
throughout the domain investigated.

In the set of algebraic equations, there is one space
increment Ax and one temporal increment At. The
finer meshes for Ax and Ar will result in a smaller
error. Yet, the magnitude of Ax and Ar cannot be
chosen arbitrarily. It can be shown [25] that in order
to have a stable solution of equation (4.1), one must
properly choose Ax and At such that:

At/(Ax)? < 4C.

where C i3 a parameter determined by the ratios of
the coefficients A,,...,K; For the problem con-
sidered, the parameter C varies with time ¢ because
those coefficients also vary with time. In order to
achieve a stable computation, a considerably smaller
value of Ar must be used at the beginning stage of
the computational simulation than at the advanced
stages, due to errors associated with the initial guess
of sorption equilibrium.

The physical parameters, boundary conditions,
and initial conditions are summarized in Table 2.
The liquid—-vapor equilibrium curve for the light-
weight concrete is shown in Fig. 2.

Numerical solutions for the histories of moisture,
temperature, and pressure in the light-weight con-
crete wall are obtained by use of a digital computer,
and shown in Fig. 3.

The result reveals that at high liquid saturation
(funicular saturation) the moisture movement is
relatively independent of the mechanical properties
of the porous system and dependent on the para-
meters characterizing the surroundings, such as
temperature, velocity and the relative humidity of the
ambiance. When the liquid threads in the light-
weight concrete begin to break down, and capillary
action in the pore spaces sets in, the internal
characteristics of the system play a primary role in
moisture migration. The curve of moisture distri-
bution is no longer convex. At the pendular
saturation stage, liquid moisture has to be vaporized
first in order to move from one location to another.
The drying rate varies with time, and is different
from one point to another throughout the thickness
of the wall. The average drying rate in this stage is
slower than that in the funicular stage. Obviously,
the temperature and pressure gradients affect the
moisture distributions, in particular, at the beginning
of pendular stage. At low moisture, saturation, vapor
flux is the only mechanism for moisture transfer in
the system. The average drying rate at this stage
becomes very slow because of the phenomenon of
pure adsorption.

C. L. D. HUANG
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TRANSFERT D’HUMIDITE DANS DES MILIEUX POREUX SOUMIS A UN GRADIENT DE
TEMPERATURE

Reésumé—Pour décrire I'histoire de la migration de 'humidité dans les milieux poreux, on considere la
dépendance des caractéristiques matérielles agissantes. Une theéorie de la diffusion avec une diffusivite
linéaire ou non n'est pas correcte pour décrire le transfert massique. On doit considerer simultanément les
transferts de masse de toutes les phases et le transfert de chaleur. A partir du principe de la
thermodynamique hors d’équilibre, des lois macroscopiques de conservation et de Péquilibre
liquide—vapeur d’un systéme poreux, on développe un systeme d’equations pour les transferts simultanes
de chaleur et de masse. La théorie est appliquée a ’¢tude de la migration de 'humidité dans un mur de
béton léger, soumis a un gradient de température. Les résultats montrent qu'en plus de la diffusion, les
meécanismes de capillarité et d’évaporation-—condensation qui sont fortement affectés par la topologie du
systéme poreux, sont importants dans le séchage.

MEHRPHASIGER FEUCHTIGKEITSTRANSPORT IN POROSEN MEDIEN UNTER
EINWIRKUNG EINES TEMPERATURGRADIENTEN

Zusammenfassung—Um die Geschichte der Feuchtigkeitausbreitung in pordsen Medien zu beschreiben,
muf} die Abhingigkeit von den wesentlichen Materialeigenschaften in Betracht gezogen werden. Eine
Diffusionstheorie mit linearem oder nichtlinearem Diffusionskoeffizienten ist nicht ausreichend fur die
Beschreibung des Stofftransportverhaltens in einem pordsen Medium. Stofftransport aller Phasen und
Warmetransport miissen gleichzeitig beriicksichtigt werden. Auf der Grundlage des Prinzips der
irrevereiblen Nichtgleichgewichts-Thermodynamik sowie der makroskopischen Erhaltungssitze und des
Dampf-Flissigkeits-Gleichgewichts pordser Systeme wird ein Satz von Grundgleichungen fir gleich-
zeitigen Stoff- und Wirmeubergang entwickelt. Die entwickelte Theorie wird bei der Untersuchung der
Feuchtigkeitsausbreitung in einer Wand aus leichtbeton unter Einflufl eines Temperaturgradienten
angewandt. Das Ergebnis zeigt, dal zusitzlich zur Diffusion sowohl der Kapillar—als auch der
Verdampfungs-Kondensations— Mechanismus wesentlich sind, die beide stark von der Topologie eines
porosen Systems abhangen.

MHOIO®A3HbLIA MEPEHOC BJIATU B IOPUCTBIX CPEJAX MMPU HAJIMUUUN
IF'PAIUEHTA TEMIIEPATYP

Annoranun — PaccMOTpeHO BIMSHHE XapaKTEDHCTMK MaTepHaja Ha NPOIECC MHrpalM BJard B
MOPHCTHIX cpenax. IlepeHoc. Macchl B HOPHMCTON Cpele HeNb3s aJ€KBAaTHO OMHCaTb C (OMOLILIO
DA py3IHOHHOTO NPHOIHXKEHHs C JHHEHHBIM WM HetuHelHbIM koddduunentom auddysun. ManHbii
npouecc Bo Beex ero $aszax [oMKeH paccMaTPHBATLCS OJHOBPEMEHHO C MPOLECCOM NEpeHoca Teruia.
Ans 31010 CHOPMYNHPOBAHA CHCTEMA YPaBHEHHMII HA OCHOBE TNPHHIMNOB HEPABHOBECHON TepMOAMHA-
MHKH HEODPaTHMBIX IIPOIIECCOB, MAaKPOCKOMHYECKHX 3aKOHOB COXDAHEHMS M 3aKOHOB DPaBHOBECHH
XKHAKOCTb-NIAp ANA NOPUCTOH cHcTeMbl. C NOMOLUBIO NPEATOKEHHOIO METONA KCCeN0BaHa MHUTpalus
BJIaTH B CTEHKE M3 Jlerkoro GeToHa mon aeifcTBHeM rpaaueHTa TeMrepaTyp. I1oka3zaHo, 4TO NOMHMO
IudPpy3un 60nblIYIO POb B HPOLECCE CYILKH HIPAIOT CHIIbL KAWUISPHOFO B3AUMOJEHCTBHS, 4 TAKKe
MEXaHU3IMBI CTIAPEHHMA ¥ KOHACHCALMH, KOTODbIE CHIBLHO 3aBHCAT OT TOMOJNOTHH MOPHCTON CHCTEMBI.
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