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Abstract-To describe the history of moisture migration in porous media, the dependence on the relevant 
material characteristics must be considered. A diffusion theory with a linear or nonlinear coefficient of 
diffusivity is not adequate for the description of the behavior of mass transfer in a porous medium. 
Transfers of mass of all phases and the transfer of heat must be considered simultaneously. Based upon 
the principle of non-equilibrium irreversible thermodynamics, the macroscopic laws of conservation, and 
the liquid&vapor equilibrium of a porous system, a set of basic equations for simultaneous mass and heat 
transfer is developed. The developed theory is applied to the investigation of moisture migration in a 
light-weight concrete wall subjected to a temperature gradient. The result reveals that in addition to 
diffusion, both the capillary and the evaporation-condensation mechanisms, which are strongly affected 

by the topology of a porous system, are important in the drying process. 

M, 
Mi, 

Xi, 

V, 
p, 
aij, 

ki, 

hi, 

V, 
c, 

r, 

w 

ni, 

n, 

V, 

NOMENCLATURE 

averaged mass for mixture; 
molecular weight of the &h-component 
[kg mol- ‘1; 
body force acting on the ith-component 
[kgms-Z~mol-l]; 

molar volume of the mixture [m3 mol- ‘I; 
total macroscopic pressure [kgm-’ se2]; 

phenomenological coefficients ; 
thermal conductivity of the ith-component 
[kgmsm3 K-l]; 

effective thermal conductivity tensor 
[kgms-3K-1]; 
unit normal vector perpendicular to the 
earth surface ; 
diffusivity of gas [m2 s-l]; 
thermal diffusivity [kg m - ’ s- ‘1; 
microscopic local velocity of gas [m s _ ‘1 ; 
microscopic local pressure of the ith- 
component [kg m-l s-‘1 ; 
equilibrium vapor pressure of bulk water 
[kgm-’ s-*1 ; 
specific enthalpy of the ith-component 

c 1, m2s-2 

mass average velocity [m s- ‘I; 
empirical parameter; 

hydraulic porous radius or characteristic 
length of a porous medium [m] ; 
volumetric moisture content per unit 
volume of the porous body [m3 mm31 ; 
the vector of absolute mass flux for the ith- 
component [kgm-2s-‘]; 
topological parameter of the porous 
medium [dimensionless] ; 
the bulk velocity vector [m s- ‘1; 

*This work is supported by the National Science 
Foundation under Grant No. 2668. 

Vjr the absolute velocity vector of the ith- 
component [kgm-‘s-‘] ; 

CP> expression in coefficients [dimensionless] ; 
0, 
o;., 

expression in coefficients [m s2 kg- ‘I; 
expression in coefficients [K- ‘I: 

9i94, heat flux of the ith-component [kgsm3]; 

T absolute temperature [K] ; 
Ji, mass flux of the ith-component relative to 

the mixture average velocity [kg mm2 s- ‘1; 

R, 
w. 

gas constant [m s2 kg- ‘1; 
expression in coefficients [m s2 kg- ‘I; 

WT, 

F 
expression in coefficients [K - ‘I; 

expression in coefficients [dimensionless], 

Greek symbols 

porosity of the porous system [m3 m-"1 ; 
volume fraction of the ith-component 

C m3m-‘1; 

mole fraction of water vapor of the gaseous 
component [mol/mol] ; 
mass concentration per unit volume of the 
porous system [kg m-j] ; 
mass concentration of the &h-component 
per unit volume of the porous system 
[kgm-“1 ; 
density of the ith-component [kg m -“I ; 
the mass rate of source of ith-component ; 
the mass rate of evaporation per unit 
volume of the porous system [kg rn-‘s- ‘1 
(without subscript) ; 
chemical potential for the ith-component 
[kgm2s-2mol-‘]; 
dimensionless parameter defined in 
equation (2.2.14) ; 
bulk viscosity of the &h-component 

[kgm I. -ls-1 

permeability of the ith-component and 
mixture through the porous system, 
respectively [m2] ; 
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shear viscosity of the ith-component 

[kgm I; -Is-I 
rate of heat generation [kg m ’ s _ “1; 
gravitational potential ; 
viscous stress tensor [kg s _’ m - ‘1; 
latent heat of vaporization from the bulk 
liquid [m* s ‘I; 
stress tensor [kgm-’ SC’]; 
surface tension of gas-liquid interface 

[kgss’]; 
surface tension at the reference temperature 
[kgs-‘1; 

StefanBoltzman constant [kgs3 Ke4]; 
empirical constant [kg s * K _ ‘1; 
moisture content ; 
relative permeability = K&K: ; 

mass transfer coefficient [mol m - * s- ‘I. 

Subscripts 

ith-component of the mixture; 
of solid ; 
of liquid ; 
of gaseous mixture; 

of vapor in a gaseous mixture : 
of air in a gaseous mixture ; 
of water. 

I. INTRODUCTION 

To DESCRIBE the history of moisture migration in 
porous media, the dependence on the relevant 
material characteristics (the topology of the solid 
matrix, interface phenomena among solid, liquid, 

gaseous vapor and air, and liquid-vapor equilibria) 
must be considered. The phenomena relevant for 
moisture, pressure, and temperature distribution are 
coupled. A diffusion theory with a linear or a 

nonlinear coefficient of diffusivity is not adequate for 
the description of the behavior of mass transfer in a 
porous medium. Transfers of mass of all phases and 

the transfer of heat must be considered simul- 
taneously. During the funicular stage (liquid satu- 
rated stage), diffusion seems to be the mechanism 

of moisture transport. However, in the pendular 
stage (unsaturated liquid flow stage), experience 
shows that diffusion, capillary and evaporation- 
condensation are the governing mechanisms in 
the mass transfer process. Experimental evidences 
prove that the pore size distribution of a porous 
medium is the important parameter affecting 
moisture transfer in the porous system in such a 
state. Theoretical analysis also confirms such a result 
[l]. Therefore, a general mathematical model for 
multi-phase moisture transfer in porous media must 
be constructed by using the principle of non- 
equilibrium irreversible flows of heat and mass. With 
the linear phenomenological equations and the laws 
of conservation in macroscopic sense [2], a set of 
differential equations for simultaneous heat and 
moisture transfer in porous media is developed. The 
set of differential equations is well-posed. With the 
given boundary and initial conditions, the differential 
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equations can be solved readily by a digital 
computer. In this paper, the developed theory is 

applied to the investigation of moisture migration in 
a light-weight concrete wall of 0.1 m thickness, 

subjected to a temperature gradient. The result 
reveals the distinction of different stages: constant 
rate. funicular state and pendular state. It shows that 
temperature gradient plays an important role in a 
drying process. This fact finds a significant appli- 

cation in engineering. 

2. ANALYSIS OF MASS AND ENERG>’ 

TRANSFER IN POROUS MEDIA 

During drying of a saturated porous system, a 

large amount of moisture evaporates from the 

boundary surface of the porous system to the 
environment at a rate which is equal to, or slightly 
lower than, the rate of evaporation from a bulk flat 
water surface under identical environmental con- 
ditions. The rate of evaporation is almost constant. If 
the latent heat of vaporization is supplied solely by 

molecular transport, the surface temperature of the 

porous medium is near the wet-bulb temperature ol 
the ambient atmosphere. This period of drying is 
called “constant rate period”. 

When the moisture content continuously drops, 

the mechanism of the removal of vapor from the 
boundary surface is still predominant. The drying 

rate gradually decreases, because the fraction of the 
surface which is saturated becomes smaller, as dry 
spots slowly appear and grow in the boundary 
surface. Inside the porous medium, the liquid phase 
of moisture filling the pore space remains con- 
tinuous This stage of drying is termed “funicular 
saturation stage”. As the drying continues, the drying 
rate is controlled by internal moisture diffusion, 

capillary action. and evaporation-condensation 
mechanisms [?I]. The drying rate becomes relatively 
insensitive to the velocity and relative humidity of 
ambient air and decreases significantly. The surface 

of the drying front, from which the evaporation 
occurs, may retreat from the boundary surface 
inward to the inside of the porous system. The 
drying period is termed “pendular saturation stage”. 

The duration of this stage depends strongly on the 
topology of the porous system. 

In this analysis, transports of a liquid and its 

vapor, mixing with chemically inert air, in a rigid 

porous system are considered. The moisture content, 
temperature, and pressure distribution in the porous 
medium are of interest. These functions can be 
determined by the application of the principle of 
nonequilibrium thermodynamics and of the macro- 
scopic conservation laws of mass. momentum. and 
energy. The macroscopic continuum approach is 
adopted in this analysis : the actual multi-phase porous 
medium is replaced by an ideal continuum which is a 
structureless substance. To any point of which we can 
assign kinematic and dynamic variables and the state 
parameters that are continuous functions of the spatial 
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FIG. I. A volumetric element of porous media. 

Table 1. Constituents of the porous system 

Components Volume fraction 
cm3 cm-” 

Mass concentration 
gcmm3 

Solid E,Y = 1 -6 6, = Ps&, = p,( 1-E) 
Liquid (water) 6, = E--ES 6, = /+E, = P,(&-EJ 

(vapor) &* 
gas ___ E 9 - 6, = P&j = PmJ+PJ -4bGJ 

(air) (l-4)&&? 
Total E,+&,+Eg = 1 6,+6,+6,,+6,, = ij 

coordinates and time. Thus, the following assumptions 

are made: 

1. The multi-phase porous system is in thermo- 

dynamic equilibrium locally; 
2. The solid matrix is rigid, and is fixed in an 

inertial frame ; 
3. The liquid component is incompressible ; 
4. The vapor, air, and their mixture are ideal 

gases ; and 
5. The moisture content ‘in the vapor phase is 

negligible in comparison with the moisture content 

in the liquid phase. 

A logical consequence of the first assumption is 
that the local variables such as mass concentrations, 
temperature, pressure, enthalpy, and others can be 
specified at any point in the porous medium. For 
convenience, the volume fraction and the mass 
concentration for various components are sum- 
marized in Table 1. Also the relations of volume 
fractions of a unit volumetric element of porous 
media are shown in Fig. 1. 

A. Macroscopic laws of conservation 
(a) The macroscopic conservation 

each component. 

6, = constant, 

84 
t+V.n,= T,, 

86," 
Yg+ V.n,, = TS”’ 

dd 
z+V.n,, = 0, 
c’t 

and 

r,+r,, = 0, 

law of mass for 

(2.1) 

(2.2) 

(2.3) 

(2.4) 

(2.5) 

where 6, denotes the mass concentration for the ith- 
component, ni the absolute mass flux of ith- 
component, t is time parameter, and Ti is the source 
for ith-component. 

In equation (2.1) we have assumed that the mass 
concentration of a solid is constant. This assumption 
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is not true when the chemical reactions and the 
mechanical swellings of solids are included. 

(b) Tl~r r~~scrrct~iorr of’ lieu,- mornrntum. In a 
conventional drying process, the characteristic time 
for drying is generally large and is of the order of 

days and months. and the transfers of heat and mass 
are rather slow. Thus. it is reasonable to treat the 

process of flows as quasi-steady. In such cases, the 
conservation of linear momentum equation can be 
replaced by the Darcy equation [4]: 

v = - K V.(P$_@), (2.6) 
r11: 

where C denotes the permeability tensor. For an 
isotropic porous system, C = KcS~,; r) is the viscosity 

of the fluid, c the porosity of the solid matrix, P the 
total pressure. and @ denotes the gravitational 

potential. 
Darcy’s equation was originally considered to be 

the equation of motion for a fluid moving through 
an isotropic and homogeneous porous medium. It has 

been extended and applied to gaseous flows in a 

porous media [4,.5] for cases where the inertia term 
in the equation of motion is negligible. 

The convective velocity of a fluid How is defined as 

the mass average velocity as follows: 

where the mass average velocity v is called bary- 
centric velocity of the mixture. and CS the density of 

the mixture, defined as 

Microscopically, there exists in each open system a 

collection of N different components of molecules. 
The molecules of the ith-component participating in 
a gross motion move with an absolute velocity vi, A 
relative mass flux for ith-component, Ji. is thus 
defined as [6] : 

J, = 6,(v,-v) = n,-h,v, (2.8) 

where the barycentric velocity v is a measure of the 

absolute macroscopic velocity of the mixture, and 
(vi-v) is a means of the diffusion velocity for the ith- 
component with respect to the barycentric velocity v. 

Dh 
() - zz 

Dr 
-v.q + ;-:- Vv:s‘+$, (2.9) 

where h is the macroscopic enthalpy per unit mass, q 
is the apparent heat flux, i is the viscous stress 
tensor, and tj represents the source of heat rate. 

Equations (2.1)~ (2.6) and (2.9) constitute the trans- 
port equations of moisture transfer in a porous 
medium under the aforementioned restrictions. 

B. Two modes qf’mct.s.s ud hrrrt trarl+v 
(a) bf&‘cUkU d@lSiOJ? ifJ +l.SroLr.5 I.‘hase. 1 tl the 

gaseous phase, molecular mass and heat transfer 
occur simultaneously. For a binary system (vapor 

and air), the following conjugated fluxes and forces 
are considered, [2.6,7] : 

FlUX Forces 

% - ; (VT) 

J,. -; (VT/L,.-Xl 
I 

J‘, - _;m (VT@, - X,). 
” 

where qs denotes the gaseous heat Rux, T is the 
absolute temperature, Ji, pi and Mi are the relative 

mass flux, the chemical potential, and the molecular 
mass of ith-component, respectively; V,. is the nabla 

operator with the constant temperature; and Xi the 
body force of ith-component. By the definition (2.8), 
the relative mass fluxes for vapor and air are: 

J, = Ci4g.(vs, -v,). (2.10) 

and 

J, = 6,,(v,, - VJ (2.11) 

respectively, where the mass average velocity of the 
gas mixture is defined by: 

V, = [b,, cqr, + 6,,t~,,]:(d,, + A,,). (2.12) 

Summation of equations (2.10) and (2.1 I) yields 

J, +J, = 0. (2.13) 

Using the linear law of irreversible thermo- 
dynamics and the Onsager reciprocal relations [2], 

we obtain the phenomenological equations: 

-qg = c 
i 
NLi VT+u,,A 

’ T i 
. (2.14) 

and 

-J,. = J, = cg y; VT+U~~A 
i I 

, (2.15) 

where 

A = 
i 

; (V,-/L, -X,.)-A (V,,p,-X,) , 
I 0 

and Uij(i,j = 1.2) are the phenomenological 
coefficients. 

At a constant temperature, the Gibbs-Duhem 
Margules equation gives 

$V,./L,. + (1 - $)V,./l, - VVP = 0. 

The expression A can be re-written as: 

A = ---I-- g (V,/L,.-X,.)- VVP+X 
i M,(l-$) M, I 

. 

where 
(2.16) 

M = M,Q, fM,(l -4). 
x = x&+x,(1 -4). 
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and where I/ is the molar volume of the mixture. 
With assumption (4), the chemical potential for 

vapor can be expressed as 

!r,(4, r. P) = const +RTln(+P), (2.17) 

and, with the densities of the gas components given 

bY 

M,P M,P 
P,+=F. Pa=- 

and 
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neglected [6]. Thus, the molecular fluxes in the 
gaseous phase may be simplified to: 

qg = -q,kqVT. (2.22) 

and 

In turn, equation (2.16) can be rewritten as: 

It can be shown from the kinetic theory of dilute 
gases [8] that the phenomenological coe&ients may 
be expressed as 

n 1, = Tk,, 

and 

a ,z = Dp (2.19) 

where k, is the thermal conductivity, D the diffu- 
sivity, and 0,. thermal diffusivity of the gaseous 
mixture. 

Substitution of equations (2.19) and (2.18) into 
equations (2.14) and (2.15) yields: 

-qg = c,k,VT+ 

and 

(2.21) 

where 7 is a nondimensional parameter defined as: 

If gravitation is the only body force acting on the 
gaseous subsystem, X,/M, = X/M = -gk. In fact, 
the term inside the braces of equation (2.20) 
represents the Dufour effect, and the term in 
equation (2.21) is the Soret effect. In natural drying 
processes, both the Defour and Soret effects may be 

J,. = -J, = -I+,c~~ ~~~ Vqi. (2.23) 

(b) Convective mass transfer. To determine the 
liquid and gas barycentric velocities, the macroscopic 
conservation law of linear momentum for the liquid 
and gaseous phase should be used. In a drying 
process, the process of fiow is reasonable to be 
treated as quasi-steady, and the linear momentum 
equations for liquid and for gaseous mixture thus 
yield [4] : 

and 

VI = --f-k v(P+@), (2.24) 
w ’ 

In gaseous convective flow, the influence of the 
gravitational force is negligible in comparison with 
that of the pressure gradient. 

It is well-known that the permeability of porous 
media depends strongly on the moisture content of 
the porous system. When a simultaneous flow of two 
or more immiscible fluids in a porous medium is 
considered, the flow rate of one of the fluids at a 
point of the porous system is reduced, since part of 
the pore space in the vicinity of that point is 
occupied by another fluid. Thus, the concept of 
relative permeability should be employed [4]. Per- 
meabilities til and k’g for the liquid and gaseous flows 
in an isotropic porous medium are generally ex- 
pressed as fractions of the single-phase permeabil- 
ities, KY and t$’ respectively. The ratios ~,/tip and 
K,/K,” are defined as relative permeabilities. and 
denoted by [, and &,, respectively. For a particular 
porous system. j, and [, are obtained directly from 
experiments. Thus, the equations of motion for the 
liquid and gaseous phases are: 

and 

(2.26) 

(2.27) 

At the transition from the funicular to the 
pendular saturation stages, an unsaturated flow 
begins in the porous medium. The liquid phase in the 
medium is in general discontinuous. Determination 
of a local value of total pressure P becomes 
compIicated because of the presence of the capillary 
and adsorption forces. 

In pendular saturation stage, there exist a great 
number of isolated liquid islands in the porous 
system. The liquid film transfer on the surface of 
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pores is hindered by the adsorptive force field of 
solid matrices. The vapor movement is thus the 
major mechanism of mass and energy transfer fat 
this stage [9]. 

3. DlFFERENTlAL EQUATIONS FOR 
DRYING PROCESSKS 

There exists a general agreement that the dura- 

tions of constant-rate and funicular saturation 
stages are very often only a small fraction of the total 

drying time. The moisture migration in coarse 
granular solids is the only exceptional case. Never- 

theless, in the following. the basic differential 
equations for the funicular and pendular saturation 
stages will be discussed separately. 

At the beginning of a drying process, the pore 
spaces in the porous medium are saturated with 
liquid which forms a continuous fluid phase within 
the matrix. Even if the pore space initially is 
saturated with liquid. a finite value of the capillary 

pressure must exist and must exceed a critical value 
before air can intrude into the element of the pore 

space [lo]. As the drying proceeds, a certain pressure 
must be built up to displace the liquid fluid. Such a 

pressure may be expressed as a function of hy- 
drostatic and capillary pressures. In the funicular 
saturation state, we can assume that the gaseous and 
solid phases are stationary, i.e.. 

vq = Y,, = 0, (3.1) 

and thus. the equations of continuity (2.2) (2.4) yield 

I, (I:,) + v. (i:,vO = - u-,,i’P,) (3.2) 

and 
^ 

;, (IJ&J = rsr. (3.3) 

The pressure P exerted on the liquid phase is a 
function of the liquid volume fraction E[, and 
temperature T [Il. 121. Thus, the gradient of P is 

expressible as: 

VP = D,VF, +&VT. (3.4) 

where D, and D,- are the coefficients of diffusivity 
which represent the partial differentials (iP.‘c?~,)~~ and 
(?P,‘iT),. respectively. 

Substitution of equation (3.4) into equation (2.24) 
yields : 

V, = - $I [D,VE,+D~VT-p,l]. (3.5) 

We substitute this result into equation (3.2) to 
obtain 

+V. 2: /‘,k^ + F!! = 0, (3.6) 
i I ‘11 1’1 

Combination of equations (3.3) and (3.6) yields: 

Many investigators [l3. 141 have shown that 

moisture transfer under temperature gradients is 

negligibly small both in very wet and very dry 
porous media. Thus the term associated with the 

temperature gradient can be dropped for /I~‘:,, <c /),c,. 
and equation (3.7) then becomes 

( 11, 
.~~ +v. 
it 

(3.X) 

This equation governs the mass transfer in the 

funicular saturation stage, and is analogous to the 

transport equation called “Darcy’s equation fat 
unsaturated flow” in the soil scicncc proposed by 
Buckingham [IS]. 

The mechanisms of moisture transfer in the 

transient period (from the funicular to the pendular 
saturation stage) are much more complex than that 
for the cases with liquid or gaseous continuity. 
Fortunately, the transient period occurs during only 
a small fraction of the total drying time. Therefore. 
we may assume that once the continuity of the liquid 
phase in a porous system breaks down. the bulk 

vapor transfer takes place immediately. 
As the liquid phase is discontinuous. several 

mechanisms for moisture transfer (such as capillarity. 
evaporation condensation) are involved in the pen- 
dular stage of drying. The transport equations 
derived in the preceding section arc no longer 

applicable; their solutions could not fit the experi- 

mental data [ 161. To explain this discrepancy, 
many investigators have proposed an evaporation 
condensation theory which includes the effects of 
temperature gradient on the movement of moisture 
in porous systems [ll, 121. Based on the principles 
of continuum mechanics and thermodynamics, 

Luikov [I71 derived a set of linear mass and heat 
transport equations. Closed form solutions were 

obtained for several simple drying cases. Unfor- 

tunately. the effect of phase change is not considered. 
and the dependence of the transfer coefficients 
(constant coefficients) on the temperature, con- 
centration. and pressure gradients is neglected. 
Assuming that all moisture transfer took place in the 

gaseous phase only. Harmathy [IX] investigated 
moisture and heat transfer in porous media. 

In this section. Harmathy’s model [LX] is em- 
ployed and extended. Since the capillary and the 
evaporation-condensation mechanism play ;I pri- 
mary role in the transport equations for the pendular 
stage, the major driving forces in the porous system 
are the gradients of mass concentration. temperature. 
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and pressure [17]. Inside the porous system, there 

exist liquid islands through which the vapor flux is 

transported by the vapor-pressure gradient across 
the air-filled pores. The flux through the liquid 

islands adjusts itself to carry on the vapor moisture 
flow. Moleculars of condensed liquid are adsorbed 
by the interior surface of solid matrix, to form the 
thin films covering the surface. Both liquid islands 

and films possess rather small mobility in com- 

parison with the vapor fluxes. Therefore, both the 
solid matrix and particles of liquid film are assumed 
stationary in this stage, i.e., 

v, = v, = 0. (3.9) 

Consequently, the equations of continuity for mass 
(2.2) through (2.5) become 

(3.10) 

t + V. IJgI, + 6,,.v,l = I-7 (3.11) 

5;: + V~[J,,+&,v,] = 0, (3.12) 

and 

I-,&,= -r,=I-. (3.13) 

Since natural drying is a slow process which takes 
place at atmospheric pressure, the liquid phase of 
moisture is considered to be incompressible, and the 
gaseous phase is taken to be ideal. Thus, 

MJ’ MA 
PI = Pw p’.=-RT> P,=F' 

and the density for the gaseous mixture is 

ps = g = & [~,4 + M,(I -$)I. (3.14) 

Equation (3.10) shows that the only local rate of 
change of liquid is caused by the phase change of 
liquid to vapor. With the aid of Table 1, equations 

(2.22) (2.23) and (2.25) the equations of continuity 
for vapor and air (3.11 and 3.12) yield the two 

second-order nonlinear partial differential equations: 

A,$+B,P+C,?- 

= D,V2@+E,V2P+G,(V~)2 

+H,(VP)Z+J,(V~~VP)+K,(Vq5~VT) 

+L,(VP.VT) (3.15) 

and 

A,c,h+B,P+C,? 

= D2Vz4 +.E,V’P+ G,(V4)' 

+H,(VP)2+J,(V~~VP)+K2(V~~VT) 

+L,(VP.VT), (3.16) 

respectively, where &, denotes the partial derivatives 
of 4 with respect to time, and where the coefficients 
Ai,. , Li are functions of dependent variables 4, P, T 
and the volume fraction Ed. They are defined as 
follows: 

Al = ?(&$3~) + cg, A2 = (1 -~)@.##J)-E~, 

B, = L(&,/~P)+E~(~/P), B2 = (1 -4)li,, 

c, = Y(8&&?T)--Eg(~/T). c2 = -(l-4)&, 

D, = L$,(K,W, D, = - DE~(M,IM), 

E, = i&($/r?,), E, = i(l-4)(+?,)> 

F, =O, F, = 0, 

G, = -DO,,(M,IM), G, = Do,,,(M,.,‘M), 

ff, = @+,o/?,)~ H, = (1-4)qj(k-,oie,), 
I, =o, I, = 0, 

J, = Do,(M,/M) J, = - DO,(M,/M) 

+ (“;/V,)[~@~&) + (k-,0/rl,)[(l-~)@i/~~, 
. ($@I)) + il, (il&p$) -<I, 

K, = -Do’,(M,/M), K, = D@(M,/M), 

L, = -~*~(K,oirl,)> L, = - (1 -dJb+~(h-,o/~,), 

in which 

0<,, = cg[(Mw- M,)IM] - @+4), 

0, = (ES/P) + (aE&aP), 

6, = (E&T)- @@T), 

7 = 9 - (P,RTIM,P), 

w, = (i/P)+ (a~/a,)(a&,/aP). 

and 

A general form of the law of conservation of 

energy is given in equation (2.9). Nevertheless, a 
rather explicit form of the energy equation for a 
porous system which consists of solid, liquid, vapor 
and air, can be written as follows [6] : 

= -v.q++i+y (3.17) 

where the mass average velocity v is defined by 

v = (fiar,vga iBgovgo + 6,v, + S,v,)/& (3.18) 

With the aid of equation (3.9) we can show that the 
mass average velocity of the porous system v is a 
negligible fraction of the mass average velocity of 
gaseous mixture, vg. Thus the term (v ‘VP) may be 
omitted. The viscous dissipation, (Vv:?), is positive 

(from the second law of thermodynamics) and 
represents an irreversible degradation of mechanical 

to thermal energy. In general, it is negligible in 
considering the drying processes. Furthermore, the 
heat source term, Y, including effects of emission and 
absorption of radiant energy, may also be neglected. 
Thus, the energy equation (3.17) becomes: 

+(n,; Vh,+n,;Vh,) 

+ZQ+V.q-g = 0, (3.19) 

where 

Q = h,.-h,. (3.20) 
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Several thermodynamic relations are needed to 

relate the total thermal energy to the dependent 
variables 4. P, and T. First, with the vapor behaving 

as an ideal gas. the Clausius Clapeyron equation 
gives the equilibrium vapor pressure PI’ in terms of 
the latent heat j. of free bulk water surface as 

where c denotes a constant of integr~ltiofl. Using 
Kelvin’s equation. the vapor pressure P,. in a 
capillary porous system with the hydraulic radius I 
can be expressed as 

hl(P,.:‘P:‘) = - (2rr/‘/,,,.,,)’ (!M,,./RT), (3.22) 

where D denotes the surface tension in the gas- liquid 

interface. The surface tension is a function of 
temperature. For a small variation of tempcraturc, 
the surface tension may be expressed as a linear 

function of absolute temperature as 

fi = CT0 -fr7; (3.23) 

where go and /I are empirical constants. Substitution 
of equation (3.21) into equation (3.22) yields the 
expression for the vapor pressure in the porous 

system : 

Note that the vapor pressure in the pores is made 

up of two parts: { 1) the first part is the pressure that 
exists when the gas -liquid interface is ffat, and (2) 

the second is the pressure caused by the effect of 
c~lrv~~tLire of the men&i. Thus. the total latent heat 
of evaporation in a porous system is: 

20 
Q=i+ 

OX,.” 
(3.25) 

In general, Q is a weak function of the gaseous 
volume fraction I:~. For simplicity. we will assume 
that the Q is independent of cy. 

With the definition P,. = P$, solving equations 
(3.21 f and (3.22) for I’ yields: 

Substitiltion of equation (3.26) into equation (3.25) 
gives the useful expression: 

1 (3.27) 

Next. we should consider the enthalpy of multi- 
component mixtures in terms of dependent variables 
d, P and T. hence, 

lJsing Maxwell‘s reciprocity relations. equation 
(3.28) can be rewritten as: 

The (i1!,‘?4) term is generally negligible in com- 
parison with (C,dT) in drying processes. Under the 

assumptions (3) and (4). the change of enthalpy for 
each constituent in the porous system is 

(J) Solid dlt,, = -I dP+(C,!,d7‘, 
I“ 

I 
(2) Liquid dk, = dP+(C,),,,dT. 

I’1 

(3) Gaseous vapor dh, = (C,,),.dT, 

and 

(4) air d/z, = (L’,,),dT. (3.30) 

The multicomponent energy flux q is a macro- 
scopic average ofconductive energy fluxes for gaseous 
mixture. solids and liquids. Since the mass average 
velocity v for the porous system is relatively small, 
the InuIticomponent energy flux and force foilow 
Fourier’s law 

q = -kVT. (3.31) 

where k is the locally averaged thermal conductivity 
of the porous system and is a function of the 
moisture content, topology of pores, and the thermal 
conductivities of the solid, liquid and gaseous 

components. Although a considerable effort was 
devoted to find explicit functions for k, unfor- 

tunately, no analytical expression for a multicom- 
ponent real porous system was found 1193. A useful 
empirical formula for an isotropic and homogeneo~~s 
porous ~nediLl~1, proposed by Kingery [ZOI], 

k = [(k,)“c,+(k,)“(i:--I;,)+(k,f”(I -c,]““, (3.32) 

will be used. where ki is the thermal conductivity of 

the ith-component ; II is the topological parameter of 
the porous system (which should be determined 
experimentally). 

After some algebraic manipulation, the total 

energy equation (3.19) can be expressed as 

_3,yi+B,P+C,‘,i’= I;‘,VT 

+ I,(wYt KJV~~VT+L,CP~w-. (3.33) 

where the coefficients AJ.. . . L3 are functions of #, P, 
T and zy. They are: 

-3, = {~,J&k,;i~l, B, = p~,Q(icJ?P)-i:, 

C, = p,,,Q(ic$‘T) 
+[(I:--:g)/I,.(cp)M’$~~I,(l -c)(C,),J 
+r:,~[dJM,,*(C,),.+(~ -cPw,(~,)JIRT~ 

D, =O. E, =O, Ci3 =O, H, =O. 

F‘, = k. I,? = (c’k/ir:,)(ic,/?T), Jz = 0. 

K, = (iki’ii:,)(ic,:i6h) 
- DMd4,,>c,P[(C,), - K,,,J/RTM. 

and 
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As we examine these coefficients of equations 
(3.15, 3.16, and 3.33) closely, we realize that the 

coefficients are functions of four independent vari- 

ables (4, P, T, and EJ, while only three basic 
equations are derived. A fourth equation, which 
describes the relation between the four variables, is 
needed. 

The existence of local equilibrium at any point of 
the porous system is assumed. The partial vapor 
pressure at any point of the system can be 
determined from a sorption relation, 

m = m(P,., T), 

which characterizes the porous system (pore size 
distribution) and must be determined experimentally. 
The equilibrium vapor pressure can be approximated 
by Kelvin’s equation, provided that the “r” in 

Kelvin’s equation is interpreted as a characteristic 
length of pores. 

Nerpin [21] and Vol’fkovich [22] proposed that a 

liquid-vapor equilibrium in a porous system can be 

expressed as a functional relation between the 

moisture content and the hydraulic radius of the 

porous system, as 

fn = m(r), 

where m is the volumetric moisture content per unit 
volume of the porous body. Such an extension is 

purely empirical, and the validity of the extension 
should be verified by experiment [22]. 

With the definition of r from Kelvin’s equation 

(3.22), equation (3.33) gives the dependence of m 
upon the variables T and P,.: 

m = m(r) = m(P,., T) = m(4, P, T). (3.34) 

and provides the required equation. 
Various experimental techniques. such as the 

Table 2. Values of the constants used in the equations (light weight concrete) 

Type of 
const. Symbol Value Unit 

Physic 
const. 

Physical 
properties 

Geom. 
const. 

Empirical 
const. 

Initial 
conditions 

Boundary 
conditions 

R 

gs 
K,h 
(C,), 
K-J 
(C,), 
D 

; 
kg 

k: 
MO 
MW 
E 

40 

8.3149 X lo-i4 
5.670 x 10-s 
1.0063 x lo3 
0.879 x to3 
1.8646 x lo3 
4.1793 x lo3 
0.256 x 1O-4 
0.8 
0.02613 
1.4422 
0.616 
28.952 x 10m3 
18.016 x 10-j 
0.3 
1.83 x 10-s 
2.50 x lo-“’ 
2.4418 x lo6 
2.6 x lo3 
0.99707 x lo3 

kgm2s-Z K-’ mol-’ 
kgs-3Km” 
m-Zs~ZK-2 
m2sm2K-2 

mm:!;212 

rn*s-’ 

kgms-3.K-’ 
kgms-3K-i 
kgmsm3 K-’ 
kgmoll’ 
kgmol-’ 
rn3rnm3 
kgm-’ s-’ 

mz 
m2 se2 
kgmm3 
kgme3 

0.10 
2.00 

m 
m 

1.209658 x lo-” 
5080 
0.25 
0.167 x 1O-3 
1.0 
121.2 X lo-3 

m?kg-i 
K 

kgs’K-l 

kgss’ 

1.01325 x 10’ kgmmis-2 
0.096 m3 mm3 
294.8 K 

f& = 0.013400 mol/mol 
C&r = 0.003548 mol/mol 

To, = 302.99 K 
To, = 294.0 K 

T,, = 304.0 K 
T,, = 293.0 K 

0.0 molm-* s-’ 



0.45 L- 

0.41 

0.37 

0.33 

0.29 

% 
& 0.25 
E 

f 
0.21 

0.17 

0.13 

0.09 

0.05 

r(i) 

/ 3.3 6.5 8.7 11.4 15.1 20.5 29.4 420 99.6 
L 3 1.0 

0 0.1 0.2 0.3 0.4 Q5 0.8 0.7 0.8 Q9 0.99 

p” /pe 

FK;. 2. Liquid vapor equilibrium curve for a light-weight concrete 

mercury-injection method, are commercially avail- 

able for determining such a relationship (3.34). 

From Fig. I we also mte that 

where A denotes a very small positive value. Except 
for the bone-dry case, the following inequality 
usually holds (assumption No. 5): 

i:, ._’ A((,$) 

4. APPLICATION OF THE 

TRANSPORT EQUATIONS 

The solution of moisture migration in a thin 

concrete slab under natural drying conditions has 
been obtained by Huang rt ul. [ 1,231. In this paper, 
the moisture migration in an extended lightweight 
concrete wall of 0.1 m thickness subjected to a 

temperature gradient is studied. 
For one-dimensional mass and heat transfer in a 

slab of thickness L, the equations (3. IS). (X.16), (3.33) 

and (3.35) are given in the following form : 
^ 

Consequently, the volumetric fraction of gas phase 
iT 

A. !% + B, ‘2;11 + ci -; 

I:~ can be approximated by writing 1 a 1‘1 (‘I 

=D,““sb+~.~2~+~,i’T+L;. 3 2 
cc, = i: - ,?1(4’,. P. 7-1, (3.35) 1 &.2 t ^ 2 <‘I 1 &.2 ’ 

i ) ?.I- 

which provides the relationship between C$ and 4. 
Thus equations (3.15). (3.16). (3.33) and (3.35) 

~~ii~~~~+l,(j7;ii+.li~~~.~~ 

form a complete workable set of nonlinear differen- 
tial equations for urls~ltur~~te~~ flow in porous media. 
The equations are similar to the equations derived 
by Harmathy [ 1X). (i = 1.2.3). (4.1) 



Multi-phase moisture transfer in porous media subjected to temperature gradient I305 

E 
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0.06 
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007 

0.06 

0.05 

404 
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e 

b c 
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FIG. 3. Distribution of moisture (a), temperature (b) and pressure (c) in IOcm light-weight concrete slab. 

and 

cg = c( 1 - ~[rb#b P, W), (4.2) 

where the function, 0 = m/e, denotes the moisture 

content. For future reference, equation (3.32) will be 
used to calculate the effective thermal conductivity of 
the porous walls. 

The boundary conditions on the surfaces of- the 

wallare(i=Oforx=O;i= 1 for.u=L) 

if= (-l)ii(T-Tgi) (withT= T), 

and 

P = P,,. 

(4.4) 

(4.5) 

where c( denotes the mass transfer coefficient. D the 
diffusion coefficient, h the heat transfer coefficient, 
and k thermal conductivity. &, T,i, and Poi 
respectively are the mole fraction of water vapor, 
temperature, and pressure of the surroundings of the 
porous wall. For a wall surrounded by air at normal 
conditions (the air pressure is at atmospheric 

(4.3) 

pressure and the temperature is between 0 and 
WC), the transfer coefficients may be expressed as 
[24] : 

r = ‘a,.+ 1.63 x IO-“[(To,- T);B]’ ’ (4.6) 

h = 2.75 x lO*~($-~,~~(~~-T’)i(7;.,- T), (4.7) 

where a, denotes the mass transfer coefficient due to 

forced convection. B is a characteristic length of the 
wall measured from the edge, cr the 

Stefan-Boltzman constant. 7;.; the temperature of the 

enclosure of the system. 

The initial conditions for the present study are 

given as follows: 

f$(X,O) = f#),,,;. P(.Y,O) = P;,, ,,)’ T(.Y,O) = 7; ,,,. (4.X) 

Therefore, equations (4.1 -4.5 and 4.8) form a 
nonlinear boundary value problem for the simul- 
taneous mass and heat transfer in a light-weight 
concrete wall. 

5. NUMERICAL ANALYSIS 
AND CALCULATION 

Obtaining an analytical solution for the nonlinear 

partial differential equations governing flows 
through porous media would not be possible. In this 



paper, an implicit finite difference scheme is em- 
ployed for obtaining numerical results. The first step 
is to replace the differential equations by a set of 
algebraic finite backward-in-time equations, which 
give the relationships among the dependent variables 

4, P, and T at neighboring points in an (_v,t) space. 
The numerical solution of the simultaneous algebraic 
equations thus obtained yields the values of the 

dependent variables at the pre-assigned grid points 

throughout the domain investigated. 
In the set of algebraic equations, there is one space 

increment A\- and one temporal increment At. The 
finer meshes for A.u and At will result in a smaller 
error. Yet, the magnitude of A\- and Af cannot be 

chosen arbitrarily. It can be shown [25] that in order 

to have a stable solution of equation (4.l), one must 

properly choose As and Ar such that: 

where C is a parameter determined by the ratios of 
the coefficients Ai,. .,K,. For the problem con- 
sidered, the parameter C varies with time t because 
those coefficients also vary with time. In order to 
achieve a stable computation, a considerably smaller 
value of At must be used at the beginning stage of 

the computational simulation than at the advanced 
stages, due to errors associated with the initial guess 
of sorption equilibrium. 

The physical parameters, boundary conditions, 
and initial conditions are summarized in Table 2. 
The liquiddvapor equilibrium curve for the light- 
weight concrete is shown in Fig. 2. 

Numerical solutions for the histories of moisture, 

temperature, and pressure in the light-weight con- 
crete wall are obtained by use of a digital computer, 
and shown in Fig. 3. 

The result reveals that at high liquid saturation 
(funicular saturation) the moisture movement is 
relatively independent of the mechanical properties 
of the porous system and dependent on the para- 

meters characterizing the surroundings, such as 
temperature, velocity and the relative humidity of the 
ambiance. When the liquid threads in the light- 

weight concrete begin to break down, and capillary 
action in the pore spaces sets in. the internal 

characteristics of the system play a primary role in 
moisture migration. The curve of moisture distri- 
bution is no longer convex. At the pendular 
saturation stage, liquid moisture has to be vaporized 
first in order to move from one location to another. 
The drying rate varies with time, and is different 
from one point to another throughout the thickness 
of the wall. The average drying rate in this stage is 
slower than that in the funicular stage. Obviously. 
the temperature and pressure gradients affect the 
moisture distributions, in particular. at the beginning 
of pendular stage. At low moisture, saturation, vapor 
flux is the only mechanism for moisture transfer in 
the system. The average drying rate at this stage 
becomes very slow because of the phenomenon of 
pure adsorption. 
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TRANSFERT D’HUMIDITE DANS DES MILIEUX POREUX SOUMIS A UN GRADIENT DE 
TEMPERATURE 

R&sum&Pour dtcrire I’histoire de la migration de l’humiditt dans les milieux poreux, on considere la 
dbpendance des caractkristiques matirielles agissantes. Une theorie de la diffusion avec une diffusivitt 
lineaire ou non n’est pas correcte pour d&ire le transfert massique. On doit considtrer simultankment les 
transferts de masse de toutes les phases et le transfert de chaleur. A partir du principe de la 

thermodynamique hors d’tquilibre, des lois macroscopiques de conservation et de I’tquilibre 

IIquide-vapeur d’un systtme poreux, on dtveloppe un systime d’equations pour les transferts simultan& 
de chaleur et de masse. La thtorie est appliquee a I’ttude de la migration de I’humiditC dans un mu, dc 
b&on Ikger, soumis a un gradient de temperature. Les rtsultats montrent qu’en plus de la diffusion, les 
mecanismes de capillarite et d’tvaporation -condensation qui sont fortement affect&s par la topologie du 

systtme poreux, sont importants dans le stchage. 

MEHRPHASIGER FEUCHTIGKEITSTRANSPORT IN POROSEN MEDIEN UNTER 
EINWIRKUNG EINES TEMPERATURGRADIENTEN 

Zusammenfassung-Urn die Geschichte der Feuchtigkeitausbreitung in poriisen Medien zu beschreiben, 
mu8 die Abhangigkeit von den wesentlichen Materialeigenschaften in Betracht gezogen werden. Eine 
Diffusionstheorie mit linearem oder nichtlinearem Diffusionskoeffizienten ist nicht ausreichend fiir die 
Beschreibung des Stofftransportverhaltens in einem porljsen Medium. Stofftransport aller Phasen und 
Warmetransport miissen gleichzeitig beriicksichtigt werden. Auf der Grundlage des Prinzips dcr 
irrevereiblen Nichtgleichgewichts-Thermodynamik sowie der makroskopischen Erhaltungssatze und des 
Dampf-Fliissigkeits-Gleichgewichts poraser Systeme wird ein Satz von Grundgleichungen ftir gleich- 
zeitigen Staff- und Wiirmedbergang entwickelt. Die entwickelte Theorie wird bei der Untersuchung der 
Feuchtigkeitsausbreitung in einer Wand aus leichtbeton unter EinRuB eines Temperaturgradienten 
angewandt. Das Ergebnis zeigt, da8 zusatzlich zur Diffusion sowohl der Kapillar als such der 

Verdampfungs-Kondensations--Mechanismus wesentlich sind, die beide stark von der Topologie eines 
poriisen Systems abhringen. 

MHOI-OQA3HbIfi I-IEPEHOC BJIAI-‘M B nOPMCTbIX CPEAAX IIPM HAJIIlYMM 
TPAAHEHTA TEMI-IEPATYP 

A11110munn - PaCCMOTpeHO EnARHHe XapaKrepecTHK Malepeana Ha npouecc Msrpanee BJIarA B 

nopucrblx cpenax. nepeHoc MaCCbI B nOpHCTOfi cpene HeJIb aneKaaTH0 OnHCaTb c nOMOIIlbI0 

RH~y3LiOHHOrO npu6numeHen C JIHHeiiHbIM SiJIH HeJIHHeiiHbIM K03@$WUHeHTOM JlH@$ySHW. fiaHHbIti 

npouecc Bo Bcex ero +a3ax nonmeH paccMaTpnBaTbcn ohHoepeMeHH0 c npoueccoM nepewca Tenna. 
Ann 3Toro c+ophlynnpoeasa cncTeMa ypasHewiB Ha 0cHoBe npmnninoe tiepaeuoeecHoCi Tephdonmia- 
MHKW HeO6paTWMblX nllOIleCCOB, MaKpOCKOnWIeCKWX 3aKOHOB COXpaHeHHR H 3aKOHOB paBHOBeC&iS 

mHnKocTb-nap ans nopwic-rok ckicTeMb1. C noMoIubm npennomeHHor0 MeTona nccnenoeana Mnrpaunn 

anarn B cTeHKe )13 nerKor0 6eToHa non nekmneM rpanneHTa TeMnepaTyp. nOKa3aH0, 4~0 nowit 
,IIW$~y3uu 6onbmym ponb I? npouecce CYUIKU nrparoT CKnbl Kan&innRpHoro B3aHMOneiiCTBIin. a TaKme 

MeXaHH3MbI HCnaFHHfl R KOHLleHCaWU, KOTOpbIc CKnbHO 3aBACIIT OT TOtIOJlOrWW nOp&iCTOii CWCTCMLI. 


